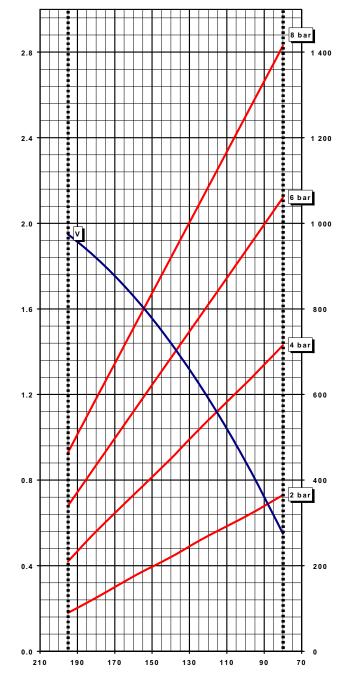

BELLOWS 6" x 2 ALUMINIUM


ASSEMBLED WITH 2x4 SCREWS F HC M8 - 15. FASTENING TORQUE 12 Nm.

Heights (mm) (H)			Stroke	
Maximum	Minimum	Design	(mm)	
195	80	140	115	
Di	Weight			
Ø MAX	Overall		(kg)	
175	190		2.2	

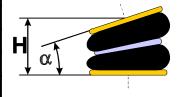
Rubber Bellow	Features	Part Numbers	
<u>Standard</u>	-Rubber Only	SP 543	
-40 to 70°C	-Assembled Bellows	SP2917	
<u>Butyl</u>	-Rubber Only	SP1348	
-25 to 90°C	-Assembled Bellows	SP2921	
<u>Epichlore</u>	-Rubber Only	SP2582	
-20 to 115°C	-Assembled Bellows	SP2922	

VOLUME V (dm3) at 6 bar

- **HEIGHT (mm)**
- Indicative value of force required to reach minimum height at atmospheric pressure : 22 daN
- Maximum pressure: 8 bar
- The datas presented on this document are liable to evolution and don't constitute a commitment from DUN-LOP AIRSPRINGS (see page 5-7).

BELLOWS 6" x 2 ALUMINIUM

FOR USE AS A PNEUMATIC ACTUATOR


CHARACTERISTICS IN STATIC CONDITION LOAD (daN) **HEIGHT** (mm) **Pressure Pressure** Pressure **Pressure** 2 bar 6 bar 8 bar 4 bar 80 365 715 1060 1415 315 625 935 1250 100 120 540 810 1085 270 140 220 450 685 920 160 175 365 560 755 180 125 280 435 590 195 210 340

ANGULAR CAPABILITY

Maximum	For H between		
(α)	H mini	H maxi	
	(mm)	(mm)	
10°	95	160	
15°	100	155	
20°	110	150	
25°	115	140	

OUT OF ALIGNMENT

For H between		
H mini	H maxi	
(mm)	(mm)	
115	170	
130	160	
	H mini (mm)	

- Airsprings must not be pressurised unless they are restricted by an outside frame or by a suitable load.
- Strokes must be limited by the direct use of bump stops or external stops.
- When stacking airsprings, special cares must be taken to ensure the airsprings are guided and fixed.
- An Airspring is a single acting air actuator and must not be used below atmospheric pressure.
- Please check the over-pressure in case of quick compression.
- The datas presented on this document are liable to evolution and don't constitute a commitment from DUNLOP AIRSPRINGS (see page 5-7).

FOR USE AS AN ISOLATOR

DYNAMIC CHARACTERISTICS AT			H= 160 mm *	
	Pressure 2 bar	Pressure 4 bar	Pressure 6 bar	Pressure 8 bar
LOAD (daN)	175	365	560	
VOLUME (dm³)	1.55	1.61	1.66	
STIFFNESS (daN/cm)	44.1	79.4	114.0	
NATURAL FREQUENCY (Hz)	2.51	2.33	2.25	
ISOLATION RATE at 10 Hz	93.3%	94.3%	94.7%	

^{*} Recommanded height for better isolation.

- Isolation rate is given by the formula:

$$I = 1 - \frac{1}{\left(\frac{fe}{fn}\right)^2 - 1}$$

$$LOAD$$

$$fe$$

$$fn$$

fe = Exciting frequency (Hz) fn = Airspring natural frequency (Hz)